MicroRNA-184 promotes differentiation of the retinal pigment epithelium by targeting the AKT2/mTOR signaling pathway
نویسندگان
چکیده
Dedifferentiation of retinal pigment epithelium (RPE) cells is a crucial contributing factor to the pathology of retinal degenerative diseases, including age-related macular degeneration (AMD). Herein, we aim to reveal the roles of microRNAs (miRNAs) in RPE dedifferentiation and seek for potential therapeutic targets. Based on the microarray data, miR-184 was sorted out as the most up-regulated signature along with the differentiation from human induced pluripotent stem cells (hiPSC) to RPE cells, suggesting its potential promotive role in RPE differentiation. In vitro study indicated that miR-184 insufficiency suppressed RPE differentiation, typified by reduction of RPE markers, and promoted cell proliferation and migration. The role of miR-184 in maintaining regular RPE function was further proved in zebrafish studies. We also noticed that miR-184 expression was reduced in the macular RPE-choroid from a donor with RPE dysfunction compared to a healthy control. We next demonstrated that RAC-beta serine/threonine-protein kinase (AKT2) was a direct target for miR-184. MiR-184 promoted RPE differentiation via suppression of AKT2/mammalian target of rapamycin (mTOR) signaling pathway. We also found that AKT2 was up-regulated in macular RPE-choroid of the donor with RPE dysfunction and dry AMD patients. Taken together, our findings suggest that miR-184 insufficiency is involved in the pathogenesis of dry AMD. MiR-184 promotes RPE differentiation via inhibiting the AKT2/mTOR signaling pathway. MiR-184 based supplementary therapeutics and mTOR blocker, like rapamycin, are prospective options for AMD treatment.
منابع مشابه
Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملHistochemical study of retinal photoreceptors development during pre- and postnatal period and their association with retinal pigment epithelium
Objective(s):The aim of this study was to evaluate distribution and changes of glycoconjugates of retinal photoreceptors during both pre- and postnatal development. Materials and Methods: Tissue sections from days 15 to 20 of Wistar rat embryos and 1 to 12 postnatal days of rat newborns including developing eye were prepared for lectinhistochemistry technique. Horseradish peroxidase (HRP)-label...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملMorphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016